skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jiang, Zhengqian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Factory in a box (FiB) is an emerging technology that meets the dynamic and diverse market demand by carrying a factory module on vehicles to perform on-site production near customers’ locations. It is suitable for meeting time-sensitive demands, such as the outbreak of disasters or epidemics/pandemics. Compared to traditional manufacturing, FiB poses a new challenge of frequently reconfiguring supply chain networks since the final production location changes as the vehicle carrying the factory travels. Supply chain network reconfiguration involves decisions regarding whether suppliers or manufacturers can be retained in the supply chain or replaced. Such a supply chain reconfiguration problem is coupled with manufacturing process planning, which assigns tasks to each manufacturer that impacts material flow in the supply chain network. Considering the supply chain reconfigurability, this article develops a new mathematical model based on nonlinear integer programming to optimize supply chain reconfiguration and assembly planning jointly. An evolutionary algorithm (EA) is developed and customized to the joint optimization of process planning and supplier/manufacturer selection. The performance of EA is verified with a nonlinear solver for a relaxed version of the problem. A case study on producing a medical product demonstrates the methodology in guiding supply chain reconfiguration and process planning as the final production site relocates in response to local demands. The methodology can be potentially generalized to supply chain and service process planning for a mobile hospital offering on-site medical services. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Additive manufacturing processes, especially those based on fused filament fabrication mechanism, have a low productivity. One solution to this problem is to adopt a collaborative additive manufacturing system that employs multiple printers/extruders working simultaneously to improve productivity by reducing the process makespan. However, very limited research is available to address the major challenges in the co-scheduling of printing path scanning for different extruders. Existing studies lack: (i) a consideration of the impact of sub-path partitions and simultaneous printing of multiple layers on the multi-extruder printing makespan; and (ii) efficient algorithms to deal with the multiple decision-making involved. This article develops an improved method by first breaking down printing paths on different printing layers into sub-paths and assigning these generated sub-paths to different extruders. A mathematical model is formulated for the co-scheduling problem, and a hybrid algorithm with sequential solution procedures integrating an evolutionary algorithm and a heuristic is customized to multiple decision-making in the co-scheduling for collaborative printing. The performance was compared with the most recent research, and the results demonstrated further makespan reduction when sub-path partition or the simultaneous printing of multiple layers is considered. This article discusses the impacts of process setups on makespan reduction, providing a quantitative tool for guiding process development. 
    more » « less
  4. Assembly system configuration determines the topological arrangement of stations with defined logical material flow among them. The design of assembly system configuration involves (1) subassembly planning that defines subassembly tasks and between-task material flows and (2) workload balancing that determines the task-station assignments. The assembly system configuration should be flexibly changed and updated to cope with product design evolution and updating. However, the uncertainty in future product evolution poses significant challenges to the assembly system configuration design since the higher cost can be incurred if the assembly line suitable for future products is very different from that for the current products. The major challenges include (1) the estimation of reconfiguration cost, (2) unavailability of probability values for possible scenarios of product evolution, and (3) consideration of the impact of the subassembly planning on the task-station assignments. To address these challenges, this paper formulates a concurrent optimization problem to design the assembly system configuration by jointly determining the subassembly planning and task-station assignments considering uncertain product evolution. A new assembly hierarchy similarity model is proposed to estimate the reconfiguration effort by comparing the commonalities among different subassembly plans of current and potential future product designs. The assembly system configuration is chosen by maximizing both assembly hierarchy similarity and assembly system throughput under the worst-case scenario. A case study motivated by real-world scenarios demonstrates the applicability of the proposed method including scenario analysis. 
    more » « less